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Farinomalein, a recently isolated maleimide from Paecilomyces farinosus, was synthesized in two steps
from a readily available c-hydroxybutenolide.
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Figure 1. Structure of farinomalein (1)

Scheme 1. Retrosynthetic analysis of 1.
Entomopathogenic fungi such as Paecilomyces farinosus are a
valuable source of bioactive natural products.1–4 In the process of
screening natural products for anti-oomycete activity, Nihira1 iso-
lated farinomalein (1), a relatively simple maleimide, from a strain
of P. farinosus (Fig. 1). Farinomalein had activity comparable to the
antibiotic amphotericin B in a bioassay for the inhibition of Phy-
tophthora sojae, a plant pathogen that causes 1–2 billion dollars
worth of damage to soybean crops.5,6 We envisioned a straightfor-
ward strategy for the synthesis of 1 and related maleimides based
on c-hydroxybutenolides as starting materials.

The c-hydroxybutenolide (5-hydroxy-2(5H)-furanone) moiety is
found in many bioactive natural products, including manoalide and
dysidolide.7 c-Hydroxybutenolides are readily prepared by several
routes, primarily by the oxidation of furans and by Mannich-type
reactions.8–11 Although most work in this area has concentrated on
the synthesis of c-hydroxybutenolides, there is growing interest in
the application of these compounds as synthetic intermediates for
the synthesis of heterocycles and other compounds.12–14 We fore-
saw c-hydroxybutenolide 28 (Scheme 1) as the starting material
for two compounds that were potential intermediates for the syn-
thesis of 1: c-hydroxybutenamide 3 and anhydride 4.

c-Hydroxybutenolide 2 is readily prepared from isovaleralde-
hyde and glyoxylic acid in one step (Scheme 2).8 We typically pre-
pare 2 in 10 g batches in 65–75% yield (the literature yield is
slightly higher). The spectroscopic evidence points to the closed
form as the major tautomer, but there is an indirect evidence for
the rapid equilibration with the open chain tautomer.15

The reaction of c-hydroxybutenolides with amines proceeds in
a variety of modes.8,12,16–20 In the case of the reaction of simple ali-
phatic primary amines with c-hydroxybutenolides, two conflicting
reports have emerged. In Faulkner’s investigation of the reaction of
phospholipase A2 inhibitor luffariellolide with primary amines,
c-aminobutenolides were the proposed products,16 whereas Ojika
described the reaction of histamine and tryptamine with
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Scheme 2. Synthesis and tautomerism of 2.
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Scheme 4. Synthesis of farinomalein 1 and methyl ester 6.

Scheme 3. Reaction of 2 with the methyl ester of b-alanine.
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c-hydroxybutenolides spongiabutenolide A and B as giving
c-hydroxybutenamides.17 We have found the reaction of the
methyl ester of b-alanine with 2 gave c-aminobutenolide 5 (89%
yield; Scheme 3).21 The unsuccessful synthesis of 3 from 2
prompted us to consider the anhydride route to 1.

There is literature precedent for the conversion of c-hydroxy-
butenolides into anhydrides, but there are no systematic studies
of this reaction.22–26 Our study of the oxidation of 2 with some of
the more common oxidants (PCC and KMnO4) typically gave mod-
erate yields of known anhydride 4,27 which was difficult to purify.
The Dess–Martin periodinate oxidation of 2 to 4 proceeded cleanly,
and just as importantly, the removal of the excess Dess–Martin
periodinate and the periodinate side product was readily accom-
plished by a simple hexane extraction (Scheme 4). Although the
conversion of an anhydride into a maleimide is typically performed
in a two-step process as described by Rich,28 the simplified one-
step procedure recently optimized by Christmann29 was appealing.
Without further purification, anhydride 4 was used in the subse-
quent reaction with b-alanine in refluxing acetic acid to give fari-
nomalein 1 (64% yield from 2).30 The spectroscopic properties of
synthetic 1 were consistent with the reported data for 1 isolated
from P. farinosus. The methyl ester of farinomalein (6), which
was described in the original report of the isolation of 1,1 was also
prepared in a similar fashion (59% yield from 2).31

The two-step synthesis of maleimide 1 from c-hydroxybuteno-
lide 2 represents a new strategy for the synthesis of an important
class of bioactive maleimides.32 With the ready availability of c-
hydroxybutenolides from various sources, the synthesis of diverse
maleimides is possible. The report by Lattmann20 describing the
one-step synthesis of maleimides from mucochloric acid and for-
mamides appears to be a useful method for the synthesis of a nar-
row range of biologically active compounds but does not appear to
be applicable for the synthesis of farinomalein and related malei-
mides. Scale-up of the oxidation (2?4) is limited by the expense
and potential hazards of handling large quantities of the Dess–
Martin periodinate, so we are continuing to investigate alternative
oxidants for the oxidation of c-hydroxybutenolides to anhydrides.
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